La serie de fourier
de la función f(x)
a(0) / 2 + (k=1.. )
(a(k) cos kx + b(k) sin kx)
a(k) = 1/PI 
f(x) cos kx dx
b(k) = 1/PI 
f(x) sin kx dx
El residuo de la
serie de fourier. Sn(x) = la suma de los primeros
n+1 términos a x.
el residuo(n) = f(x) - Sn(x) = 1/PI 
f(x+t) Dn(t) dt
Sn(x) = 1/PI 
f(x+t) Dn(t) dt
Dn(x) = Dirichlet kernel = 1/2 + cos
x + cos 2x + .. + cos nx = [ sin(n + 1/2)x ] / [ 2sin(x/2) ]
Teorema de Riemann.
Si f(x) es continuo a excepción de un número
finito de saltos finitos en todos los intervalos finitos pues:
lim(k-> )

f(t) cos kt dt = lim(k-> ) f(t)
sin kt dt = 0
La serie fourier de
la función f(x) en un intervalo arbitrario.
A(0) / 2 + (k=1.. )
[ A(k) cos (k(PI)x / m) + B(k) (sin k(PI)x / m) ]
a(k) = 1/m  f(x)
cos (k(PI)x / m) dx
b(k) = 1/m  f(x)
sin (k(PI)x / m) dx
El Teorema de Parseval.
Si f(x) es continuo; f(-PI) = f(PI) pues
1/PI 
f^2(x) dx = a(0)^2 / 2 + (k=1.. )
(a(k)^2 + b(k)^2)
La Integral Fourier
de la función f(x)
f(x) = 
( a(y) cos yx + b(y) sin yx ) dy
a(y) = 1/PI 
f(t) cos ty dt
b(y) = 1/PI 
f(t) sin ty dt
f(x) = 1/PI 
dy  f(t)
cos (y(x-t)) dt
Casos espaciales de la Integral Fourier
si f(x) = f(-x) pues
f(x) = 2/PI 
cos xy dy  f(t)
cos yt dt
if f(-x) = -f(x) then
f(x) = 2/PI 
sin xy dy  sin
yt dt
(Transforms) de
Fourier
(Transform) Fourier coseno
g(x) = (2/PI) f(t)
cos xt dt
(Transform) Fourier seno
g(x) = (2/PI) f(t)
sin xt dt
Identidades de los (tranforms)
Si f(-x) = f(x) pues
Transform Fourier coseno ( Tranform Fourier
coseno (f(x)) ) = f(x)
Si f(-x) = -f(x) pues
Transform Fourier seno (Transform Fourier
seno (f(x)) ) = f(x)

|