![]() |
| Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|
|||||||||||
|
|
a(0) / 2 +
remainder(n) = f(x) - Sn(x) = 1/PI Sn(x) = 1/PI Dn(x) = Dirichlet kernel = 1/2 + cos x + cos 2x + .. + cos nx = [ sin(n + 1/2)x ] / [ 2sin(x/2) ] Riemann's Theorem.
If f(x) is continuous except for a finite # of finite
jumps in every finite interval then:
lim(k->
A(0) / 2 + 1/PI
f(x) =
if f(x) = f(-x) then
Fourier Cosine Transform g(x) = Fourier Sine Transform g(x) = If f(-x) = f(x) then Fourier Cosine Transform ( Fourier Cosine Transform (f(x)) ) = f(x)If f(-x) = -f(x) then Fourier Sine Transform (Fourier Sine Transform (f(x)) ) = f(x) |
|
||||||||||||||||
|
|