Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|||||||||||
|
|
The fourier series of the function f(x)
a(0) / 2 + (k=1..)
(a(k) cos kx + b(k) sin kx)
remainder(n) = f(x) - Sn(x) = 1/PI
f(x+t) Dn(t) dt
Sn(x) = 1/PI
f(x+t) Dn(t) dt
Dn(x) = Dirichlet kernel = 1/2 + cos x + cos 2x + .. + cos nx = [ sin(n + 1/2)x ] / [ 2sin(x/2) ]Riemann's Theorem. If f(x) is continuous except for a finite # of finite jumps in every finite interval then: lim(k->) f(t) cos kt dt = lim(k->)f(t) sin kt dt = 0 The fourier series of the function f(x) in an arbitrary interval.
A(0) / 2 + (k=1..)
[ A(k) cos (k(PI)x / m) + B(k) (sin k(PI)x / m) ]
1/PI
f^2(x) dx = a(0)^2 / 2 + (k=1..)
(a(k)^2 + b(k)^2)
Fourier Integral of the function f(x)
f(x) =
( a(y) cos yx + b(y) sin yx ) dy
Special Cases of Fourier Integral
if f(x) = f(-x) then
Fourier Cosine Transform g(x) = (2/PI)f(t) cos xt dt Fourier Sine Transform g(x) = (2/PI)f(t) sin xt dt Identities of the Transforms If f(-x) = f(x) then Fourier Cosine Transform ( Fourier Cosine Transform (f(x)) ) = f(x)If f(-x) = -f(x) then Fourier Sine Transform (Fourier Sine Transform (f(x)) ) = f(x) |
|
||||||||||||||||
|