Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|||||||||||
|
|
Formal Integral Definition: a = x0 < x1 < x2 < ... < xn = b d = max (x1-x0, x2-x1, ... , xn - x(n-1)) x(k-1) <= X(k) <= x(k) k = 1, 2, ... , nF '(x) dx = F(b) - F(a) (Fundamental Theorem for integrals of derivatives) a f(x) dx = a f(x) dx (if a is constant) f(x) + g(x) dx = f(x) dx + g(x) dx f(x) dx = f(x) dx | (a b) f(x) dx + f(x) dx = f(x) dx f(u) du/dx dx = f(u) du (integration by substitution)
|
|
||||||||||||||||
|