Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|||||||||||
|
|
1. Proof
u = ex - e-x then we find du = (ex + e-x) dx substitute du= (ex + e-x) dx, u = ex
- e-x
= ln |u| + C substitute back u = ex - e-x = ln |ex - e-x| + C since (ex - e-x)/2 = sinh(x) = ln |2 sinh x| + C ln 2 is merely a constant that can be combined with C = ln |sinh x| + C |
|
||||||||||||||||||||||||||
|