Discussion of
sec x = ln|sec x + tan x| + C.
|
1. Proof
Strategy: The strategy is not obvious. Multiply and divide
by (sec x + tan x); use Substitution.
sec x dx =
sec x |
sec x + tan x
sec x + tan x |
dx |
set
u = sec x + tan x
then we find
du = (sec x tan x + sec2 x) dx
substitute du = (sec x tan x + sec2 x) dx, u = sec x + tan
x
sec x |
sec x + tan x
sec x + tan x |
dx = |
(sec2 x + sec x tan x) dx
sec x + tan x
|
= |
du
u
|
solve integral
= ln |u| + C
substitute back u=sec x + tan x
= ln |sec x + tan x| + C
Q.E.D.
|