![]()  | 
		
| Home | Teacher | Parents | Glossary | About Us | |||||||||||
| 
				 | 
		|||||||||||
				
  | 
		
			
      		
  | 
		
	
  
	
     
      
 Discoverer: Cavalieri (1598-1647) Proved: (n=1,2..9) Cavalieri; (n=positive integer) Fermat (1601-1665)   Proof #1: From the derivative Given : 
 
 
 
    Proof #2: Fermat's Method Known: 
 
 
 = b^n*(b - Br) + (Br)^n*(Br - Br^2) + (Br^2)^n*(Br^2 - Br^3) + ... = b^(n+1)(1-r) + b^(n+1)r^(n+1)(1-r) + b^(n+1)r^(2n+2)(1-r) + ... = b^(n+1)(1-r) [ 1 + r^(n+1) + (r^(n+1))^2 + ... ] = b^(n+1)(1-r) [ 1 / (1-r^(n+1)) ] (Theorem 2.) = b^(n+1) / [ (1 - r^(n+1)) / (1-r) ] = b^(n+1) / [ 1 + r + r^2 + .. + r^n ] (Theorem 1.) = b^(n+1) / (n+1) (r -> 1) QED.   
  | 
	
		
  | 
  ||||||||||||||||
| 
		    |