Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|||||||||||
|
|
Discoverer: Cavalieri (1598-1647) Proved: (n=1,2..9) Cavalieri; (n=positive integer) Fermat (1601-1665)
Proof #1: From the derivative Given :
m x^(m-1) dx = ../../derivatives/more/x^n.htm x^m dx = x^m + d. (Fundamental Theorem of Calculus) (d = an arbitrary constant) x^(m-1) dx = x^m / m + c (Divide both sides by m) (c=arbitrary constant, d/m = c) x^n dx = x^(n+1) / (n+1) + c (Set m=n+1, substitution) QED.
Proof #2: Fermat's Method Known:
(0 to b) x^n dx is computed by taking the areas of an infinite number of unequal subintervals; larger subintervals at x close to b, smaller when close to 0. (0 to b) f(x) dx = f(b)*(b - br) + f(Br)*(Br - Br^2) + f(Br^2)*(Br^2 - Br^3) + ... (r -> 1-) = b^n*(b - Br) + (Br)^n*(Br - Br^2) + (Br^2)^n*(Br^2 - Br^3) + ... = b^(n+1)(1-r) + b^(n+1)r^(n+1)(1-r) + b^(n+1)r^(2n+2)(1-r) + ... = b^(n+1)(1-r) [ 1 + r^(n+1) + (r^(n+1))^2 + ... ] = b^(n+1)(1-r) [ 1 / (1-r^(n+1)) ] (Theorem 2.) = b^(n+1) / [ (1 - r^(n+1)) / (1-r) ] = b^(n+1) / [ 1 + r + r^2 + .. + r^n ] (Theorem 1.) = b^(n+1) / (n+1) (r -> 1) QED.
|
|
||||||||||||||||
|