Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|||||||||||
|
|
Notación: Las letras minúsculas a-h, l-z denotan escalares. Las letras mayúsculas y negritas A-Z denotan vectores. Letras minúsculas y negritas i, j, k denotan vectores de unidad. <a, b> denota un vector con componentes a y b. <x1, .., xn> denota un vector con n componentes cuales son x1, x2, x3, ..,xn. |R| denota la magnitud del vector R. |<a, b>| = la magnitud del vector = (a 2+ b 2) |<x1, .., xn>| = (x1 2+ .. + xn 2) <a, b> + <c, d> = <a+c, b+d> <x1, .., xn> + <y1, .., yn>= < x1+y1, .., xn+yn> k <a, b> = <ka, kb> k <x1, .., xn> = <k x1, .., k x2> <a, b> <c, d> = ac + bd <x1, .., xn> <y1, ..,yn> = x1 y1 + .. + xn yn> R S= |R| |S| cos ( = el ángulo entre los) R S= S R (a R) (bS) = (ab) R S R (S + T)= R S+ R T R R = |R| 2 |R x S| = |R| |S| sen ( = el ángulo entre los dos vectores). La dirección de R x S es perpendicular a A & B y según a la ley de mano derecha. | i j k | R x S = | r1 r2 r3 | = / |r2 r3| |r3 r1| |r1 r2| \ | s1 s2 s3 | \ |s2 s3| , |s3 s1| , |s1 s2| / S x R = - R x S (a R) x S = R x (a S) = a (Rx S) R x (S + T) = R x S + Rx T R x R = 0 Si a, b, c = los ángulos entre los vectores de unidad i, j,k y R Pues los cosenos de dirección son definidos por: cos a = (R i) / |R|; cos b = (R j) / |R|; cos c = (R k) / |R| |R x S| = El área del paralelográmo con lados R y S. El componente de R en la dirección de S = |R|cos = (R S) / |S| (resultado escalar) El proyección de R el la dirección de S = |R|cos = (R S) S/ |S| 2 (resultado vector)
|
|
||||||||||||||||
|