|
|
Fourier Transform
Definition of
Fourier Transform
f(x) = 1/ (2 )

g(t) e^(i tx) dt
Inverse Identity
of Fourier Transform
g(x) = 1/ (2 )

f(t) e^(-i TX) DT

Fourier Sine and Cosine Transforms
Definitions
of the Transforms
f(x) = (2/ )

g(x) cos(xt) DT (Cosine Transform)
f(x) = (2/ )

g(x) sin(XT) DT (Sine Transform)
Identities of
the Transforms
IF f(x) is even, THEN FourierSineTransform(
FourierSineTransform(f(x)) ) = f(x)
IF f(x) is odd, THEN FourierCosineTransform( FourierCosineTransform(f(x))
) = f(x)
Under certain restrictions of continuity.

|
|
|