Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|||||||||||
|
|
Definitions of the Derivative: f(t) dt = f(x) (Fundamental Theorem for Derivatives)
c f(x) = c f(x) (c is a constant) f(g(x)) = f(g) * g(x) (chain rule) f(x)g(x) = f'(x)g(x) + f(x)g '(x) (product rule) f(x)/g(x) = ( f '(x)g(x) - f(x)g '(x) ) / g^2(x) (quotient rule) Partial Differentiation Identitiesif f( x(r,s), y(r,s) ) df / dr = df / dx * dx / DR + df / dy * dy / DR df / ds = df / dx * dx / Ds + df / dy * dy / Ds if f( x(r,s) ) df / DR = df / dx * dx / DR df / Ds = df / dx * dx / Ds directional derivative df(x,y) / d(Xi sub a) = f1(x,y) cos(a) + f2(x,y) sin(a) (Xi sub a) = angle counterclockwise from pos. x axis.
|
|
||||||||||||||||
|