Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|||||||||||
|
|
Demostración de c f(x) = c f(x) : partiendo la definación Dado que:
f(x) = lim(d->0) ( f(x+d)-f(x)
)/d c f(x) = lim(d->0) (c f(x+d)) - (c f(x))/d = c * (f(x+d) - f(x))/d = c * f(x) Demostración de (f(x) + g(x)) = f(x) + g(x) : partiendo la definición Dado que:
f(x) = lim(d->0) ( f(x+d)-f(x)
)/d (f(x) + g(x)) = lim(d->0) [ (f(x+d) + g(x+d)) - (f(x) + g(x)) ] / d = (f(x+d)-f(x))/d + (g(x+d)-g(x))/d = f(x) + g(x) Demostración de la Regla de la Cadena : f(g(x)) = f(g) g(x) : partiendo la definición Dado que:
f(x) = lim(d->0) ( f(x+d)-f(x) )/d f(g(x)) = df/dx = (f(g(x+d) - f(g(x))/d df/dx * 1/(dg/dx) = [ (f(g(x+d) - f(g(x))/d ] * [ d/(g(x+d) - g(x)) ] = ( f(g(x+d))-f(g(x)) )/(g(x+d)-g(x)) = df/dg df/dx = df/dg * dg/dx
|
|
|||||||||||||||||
|