Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|||||||||||
|
|
Proofs of Derivative of Trig FunctionsProof of sin(x) : algebraic Method Given: lim(d->0) sin(d)/d = 1. sin(x) = lim(d->0) ( sin(x+d) - sin(x) ) / d = lim ( sin(x)cos(d) + cos(x)sin(d) - sin(x) ) / d = lim ( sin(x)cos(d) - sin(x) )/d + lim cos(x)sin(d)/d = sin(x) lim ( cos(d) - 1 )/d + cos(x) lim sin(d)/d = sin(x) lim ( (cos(d)-1)(cos(d)+1) ) / ( d(cos(d)+1) ) + cos(x) lim sin(d)/d = sin(x) lim ( cos^2(d)-1 ) / ( d(cos(d)+1 ) + cos(x) lim sin(d)/d = sin(x) lim -sin^2(d) / ( d(cos(d) + 1) + cos(x) lim sin(d)/d = sin(x) lim (-sin(d)) * lim sin(d)/d * lim 1/(cos(d)+1) + cos(x) lim sin(d)/d = sin(x) * 0 * 1 * 1/2 + cos(x) * 1 = cos(x) Q.E.D. Proof of cos(x) : from the derivative of sine This can be derived just like sin(x) was derived or more easily from the result of sin(x) Given:
sin(x) = cos(x); Chain Rule. cos(x) = sin(x + PI/2) cos(x) = sin(x + PI/2) = sin(u) * (x + PI/2) (Set u = x + PI/2) = cos(u) * 1 = cos(x + PI/2) = -sin(x) Q.E.D. Proof of tan(x) : from the derivatives of sine and cosine Given:
sin(x) = cos(x);
cos(x) = -sin(x); Quotient
Rule. tan(x) = sin(x) / cos(x) tan(x) = sin(x)/cos(x) = ( cos(x) sin(x) - sin(x) cos(x) ) / cos^2(x) = ( cos(x)cos(x) + sin(x)sin(x) ) / cos^2(x) = 1 + tan^2(x) = sec^2(x) Q.E.D. Reciprocals Proof of csc(x), sec(x), cot(x) : from derivatives of their reciprocal functions Given:
sin(x) = cos(x);
cos(x) = -sin(x);
tan(x) = cot(x); Quotient
Rule. csc(x) = 1/sin(x) = ( sin(x) (1) - 1 sin(x) ) / sin^2(x) = -cos(x) / sin^2(x) = -csc(x)cot(x) sec(x) = 1/cos(x) = ( cos(x) (1) - 1 cos(x) ) / cos^2(x) = sin(x) / cos^2(x) = sec(x)tan(x) cot(x) = 1/tan(x) = ( tan(x) (1) - 1 tan(x) ) / tan^2(x) = -sec^2(x) / tan^2(x) = -csc^2(x) Q.E.D.
|
|
|||||||||||||||||
|