![]() |
Home | Teacher | Parents | Glossary | About Us | |||||||||||
![]() |
|||||||||||
|
|||||||||||
|
![]() |
|
Proofs of Derivative of Trig FunctionsProof of![]() Given: lim(d->0) sin(d)/d = 1.
= lim ( sin(x)cos(d) + cos(x)sin(d) - sin(x) ) / d = lim ( sin(x)cos(d) - sin(x) )/d + lim cos(x)sin(d)/d = sin(x) lim ( cos(d) - 1 )/d + cos(x) lim sin(d)/d = sin(x) lim ( (cos(d)-1)(cos(d)+1) ) / ( d(cos(d)+1) ) + cos(x) lim sin(d)/d = sin(x) lim ( cos^2(d)-1 ) / ( d(cos(d)+1 ) + cos(x) lim sin(d)/d = sin(x) lim -sin^2(d) / ( d(cos(d) + 1) + cos(x) lim sin(d)/d = sin(x) lim (-sin(d)) * lim sin(d)/d * lim 1/(cos(d)+1) + cos(x) lim sin(d)/d = sin(x) * 0 * 1 * 1/2 + cos(x) * 1 = cos(x) Q.E.D. Proof of This can be derived just like Given: cos(x) = sin(x + PI/2)
= = cos(u) * 1 = cos(x + PI/2) = -sin(x) Q.E.D. Proof of Given: tan(x) = sin(x) / cos(x)
= ( cos(x) = ( cos(x)cos(x) + sin(x)sin(x) ) / cos^2(x) = 1 + tan^2(x) = sec^2(x) Q.E.D. Reciprocals Proof of Given:
|
|
|||||||||||||||||
|