|
|
Discussion of
cos
x dx = sin x + C
sin
x dx = -cos x + C
sec2
x dx = tan x + C
csc
x cot x dx = -csc x + C
sec
x tan x dx = sec x + C
csc2
x dx = -cot x + C
|
1. Proofs
For each of these, we simply use the Fundamental
of Calculus, because we know their corresponding derivatives.
cos(x) =
sin(x), cos(x)
dx = sin(x) + c
-sin(x) =
cos(x), sin(x)
dx = -cos(x) + c
sec^2(x) =
tan(x), sec^2(x)
dx = tan(x) + c
-csc(x)cot(x) =
csc(x), csc(x)cot(x)
dx = -csc(x) + c
sec(x)tan(x) =
sec(x), sec(x)tan(x)
dx = sec(x) + c
-csc^2(x) =
cot(x), csc^2(x)
dx = -cot(x) + c
See also:
sin(x) = cos(x),
cos(x) = -sin(x),
tan(x) = sec2(x),
csc(x) = -csc(x)cot(x),
sec(x) = sec(x)tan(x),
cot(x) = -csc2(x).
|
|
|