Home | Teacher | Parents | Glossary | About Us | |||||||||||
|
|||||||||||
|
|
Proofs of Derivatives of HyperbolasProof of sinh(x) = cosh(x) : From the derivative of e^x Given: sinh(x) = ( e^x
- e^-x )/2; cosh(x)
= (e^x + e^-x)/2;
( f(x)+g(x) ) =
f(x) + g(x); Chain
Rule; (
c*f(x) ) = c f(x).
sinh(x)= ( e^x- e^-x )/2 = 1/2 (e^x) -1/2 (e^-x) = 1/2 e^x + 1/2 e^-x = ( e^x + e^-x )/2 = cosh(x)   Q.E.D Proof of cosh(x) = sinh(x) : From the derivative of e^x Given: sinh(x) = ( e^x
- e^-x )/2; cosh(x)
= (e^x + e^-x)/2;
( f(x)+g(x) ) =
f(x) + g(x); Chain
Rule; (
c*f(x) ) = c f(x). cosh(x)= ( e^x + e^-x)/2 = 1/2 (e^x) + 1/2 (e^-x) = 1/2 e^x - 1/2 e^-x = ( e^x - e^-x )/2 = sinh(x) QED Proof of tanh(x)= 1 - tan^2(x) : from the derivatives of sinh(x) and cosh(x) Given: sinh(x)
= cosh(x); cosh(x)
= sinh(x); tanh(x) = sinh(x)/cosh(x);
Quotient Rule. tanh(x)= sinh(x)/cosh(x) = ( cosh(x) sinh(x) - sinh(x) cosh(x) ) / cosh^2(x) = ( cosh(x) cosh(x) - sinh(x) sinh(x) ) / cosh^2(x) = 1 - tanh^2(x) QED Proof of csch(x)= -coth(x)csch(x), sech(x) = -tanh(x)sech(x), coth(x) = 1 - coth^2(x) : From the derivatives of their reciprocal functions Given: sinh(x) = cosh(x); cosh(x) = sinh(x); tanh(x) = 1 - tanh^2(x); csch(x) = 1/sinh(x); sech(x) = 1/cosh(x); coth(x) = 1/tanh(x); Quotient Rule. csch(x)= 1/sinh(x)= ( sinh(x) 1 - 1 sinh(x))/sinh^2(x) = -cosh(x)/sinh^2(x) = -coth(x)csch(x) sech(x)= 1/cosh(x)= ( cosh(x) 1 - 1 cosh(x))/cosh^2(x) = -sinh(x)/cosh^2(x) = -tanh(x)sech(x) coth(x)= 1/tanh(x)= ( tanh(x) 1 - 1 tanh(x))/tanh^2(x) = (tanh^2(x) - 1)/tanh^2(x) = 1 - coth^2(x)
|
|
|||||||||||||||||
|